ALGEBRAIC NUMBER THEORY FINAL EXAM

Attempt all questions. Total : 100 marks

- (1) Let $K = \mathbb{Q}[\sqrt{2}, \sqrt{3}]$. Note that K is a normal extension of \mathbb{Q} of degree 4, with Galois group $\operatorname{Gal}(K/\mathbb{Q})$ equal to the Klein 4 group. Also note that K contains 3 quadratic subfields $\mathbb{Q}[\sqrt{2}]$, $\mathbb{Q}[\sqrt{3}]$ and $\mathbb{Q}[\sqrt{6}]$.
 - (a) Let p be a prime in \mathbb{Z} which is ramified in each of the quadratic subfields. What happens to p in K? Give an example of such a prime p.(20 marks)
 - (b) Let p be a prime in \mathbb{Z} which splits completely in each of the quadratic subfields. What happens to p in K? Give an example of such a prime p.(20 marks)
- (2) Let $K \subset L \subset M$ be a tower of number fields, such that M and L are both normal extensions of K. Let P be a prime of K, let Q be a prime of L lying above P, let U be a prime of M lying above Q. Assume, P is unramified in M (and, hence in L). We thus have the Frobenius automorphisms $\phi(U|P)$, $\phi(U|Q)$ and $\phi(Q|P)$. Prove that $\phi(U|Q) = \phi(U|P)^{f(Q|P)}$, and $\phi(Q|P)$ is the restriction of $\phi(U|P)$ to L (here, f(Q|P) is the inertia degree of Q over P). (10+10 = 20 marks)
- (3) Compute the ideal class group of the number ring of $\mathbb{Q}[\sqrt{-14}]$. You may wish to use the result that, given any element of the class group of a number ring R, there exists an ideal J representing this element, such that $||J|| \leq \frac{n!}{n^n} (\frac{4}{\pi})^s \sqrt{|disc(R)|}$. (20 marks)
- (4) State the Dirichlet Unit Theorem. Compute the fundamental unit and the unit group of the number ring $\mathbb{Z}[\sqrt{11}]$. (10+10 = 20 marks)